基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Due to the development of E-Commerce, collaboration filtering (CF) recommendation algorithm becomes popular in recent years. It has some limitations such as cold start, data sparseness and low operation efficiency. In this paper, a CF recommendation algorithm is propose based on the latent factor model and improved spectral clustering (CFRALFMISC) to improve the forecasting precision. The latent factor model was firstly adopted to predict the missing score. Then, the cluster validity index was used to determine the number of clusters. Finally, the spectral clustering was improved by using the FCM algorithm to replace the K-means in the spectral clustering. The simulation results show that CFRALFMISC can effectively improve the recommendation precision compared with other algorithms.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Collaboration Filtering Recommendation Algorithm Based on the Latent Factor Model and Improved Spectral Clustering
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 COLLABORATION FILTERING RECOMMENDATION algorithm LATENT Factor Model Cluster validity index SPECTRAL CLUSTERING
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 98-100
页数 3页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
COLLABORATION
FILTERING
RECOMMENDATION
algorithm
LATENT
Factor
Model
Cluster
validity
index
SPECTRAL
CLUSTERING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导