基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为有效挖掘模态间共享与模态特有的信息,本文提出一种注意力机制引导的半孪生网络,用于分割多模态(MRI与CT)心脏图像.具体地,首先运用循环一致的生成对抗网络(CycleGAN)进行双向的图像生成(即从MRI到CT以及从CT到MRI),这样可以解决模态间心脏图像不配对的问题;其次,设计一个新的半孪生网络,将原始的CT(或MR)图像及其生成的MR(或CT)图像进行配对并同时输入,先通过两个编码器(encoders)分别学习模态特有的特征,再经过一个跨模态的注意力模块将不同模态的特征进行融合,最后输入一个公共的解码器(decoder)来得到模态共享的特征,用于心脏图像分割.上述学习过程是端到端的方式进行训练.本文将所提方法在真实的CT与MR不配对的心脏图像数据集上进行实验评估,表明所提方法的分割精度超出基准方法.
推荐文章
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
MCA-Net:多尺度综合注意力CNN在医学图像分割中的应用
医学图像分割
因式分解
双路径融合块
通道注意力
空间注意力
多尺度注意力块
注意力机制引导暗区域的低光照图像增强
深度学习
注意力机制
低光照图像
图像增强
基于卷积注意力机制和多损失联合的跨模态行人重识别
跨模态行人重识别
深度学习
卷积注意力机制
多损失联合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 注意力机制引导的多模态心脏图像分割
来源期刊 南京师大学报(自然科学版) 学科 工学
关键词 注意力机制 多模态心脏图像分割 半孪生网络 跨模态图像生成
年,卷(期) 2019,(3) 所属期刊栏目 全国机器学习会议论文专栏
研究方向 页码范围 27-31,41
页数 6页 分类号 TP391.4
字数 3810字 语种 中文
DOI 10.3969/j.issn.1001-4616.2019.03.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨琬琪 南京师范大学计算机科学与技术学院 2 2 1.0 1.0
2 周子奇 南京师范大学计算机科学与技术学院 1 0 0.0 0.0
3 郭心娜 南京师范大学计算机科学与技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
注意力机制
多模态心脏图像分割
半孪生网络
跨模态图像生成
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京师大学报(自然科学版)
季刊
1001-4616
32-1239/N
大16开
南京市宁海路122号南京师范大学
1955
chi
出版文献量(篇)
2319
总下载数(次)
4
总被引数(次)
17979
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导