基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The spread of events happens all the time in social networks. The prediction of event propagation has received extensive attention in data mining community. In prior studies, topologies in social networks are usually exploited to predict the scope of event propagation. User’s action logs can be obtained in reality, but it is difficult to get topologies in social networks. In this paper, NTGP, a prediction model for non-topological event propagation, is proposed. Firstly a time decay sampling method was used to extract the walk paths from user’s action log, and then deep learning method was applied to learn the sampling paths and predict the future propagation range of the target event. Extensive experiments demonstrate effectiveness of NT-GP.
推荐文章
Statistics matters in interpretations of non-traditional stable isotopic data
Isotopic data processing
Error propagation
Significant digits
Difference between means with uncertainties
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Lyocell与Model织物风格比较
再生纤维素纤维
Lyocell织物
Model织物
风格特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Prediction Model for Non-topological Event Propagation in Social Networks
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Social network Non-topological Action LOG Time DECAY sampling
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 250-252
页数 3页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Social
network
Non-topological
Action
LOG
Time
DECAY
sampling
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导