基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着电力行业的迅速发展,窃电手段呈现出更复杂隐蔽的特点,给反窃电带来了很大考验.基于此,提出一种基于网络特征与用户行为分析的联合窃电检测方法.一方面,从网络特征分析角度出发,根据当前的电力网络测量数据,基于标准化残差搜索法识别与估计异常参数,准确定位疑似窃电用户所在支路,实现横向窃电检测;另一方面,从用户行为分析角度出发,利用用户的历史用电数据,结合粒子群算法(particle swarm optimization,PSO)和支持向量机(support vector machine,SVM)算法,提高窃电检测分析精度,实现纵向窃电检测.仿真结果表明,利用该联合窃电检测模型能够准确确定窃电异常支路并定位该支路上的窃电用户,有效筛选出电力网络的窃电嫌疑用户.
推荐文章
基于CNN-LG模型的窃电行为检测方法研究
窃电
决策树
用电数据
卷积神经网络
轻梯度提升机
用电检查中窃电与违约用电管理措施分析
用电检查
窃电
违约用电
管理措施
一种基于离群算法的窃电行为检测的研究
窃电检测
离群算法
密度聚类
用电频率
关联规则
评价矩阵
基于数据挖掘算法的用户窃电嫌疑分析
窃电分析
Hadoop
数据挖掘
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于网络特征与用户行为分析的联合窃电检测方法
来源期刊 武汉大学学报(工学版) 学科 工学
关键词 窃电检测 支持向量机 粒子群算法 负荷预测
年,卷(期) 2019,(12) 所属期刊栏目 电子信息工程
研究方向 页码范围 1121-1128
页数 8页 分类号 TM726.4
字数 语种 中文
DOI 10.14188/j.1671-8844.2019-12-012
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (101)
共引文献  (146)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(9)
  • 参考文献(0)
  • 二级参考文献(9)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(9)
  • 参考文献(2)
  • 二级参考文献(7)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(10)
  • 参考文献(3)
  • 二级参考文献(7)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(6)
  • 参考文献(0)
  • 二级参考文献(6)
2019(6)
  • 参考文献(0)
  • 二级参考文献(6)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
窃电检测
支持向量机
粒子群算法
负荷预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
武汉大学学报(工学版)
月刊
1671-8844
42-1675/T
大16开
武汉市武昌珞珈山东湖南路8号
38-18
1957
chi
出版文献量(篇)
3864
总下载数(次)
12
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导