基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决红外无损检测缺陷定量识别困难的问题,提出了一种粒子群算法(PSO)优化反向传播(BP)神经网络的缺陷定量识别方法.以最佳检测时间与最大温差为模型的输入,孔洞缺陷的深度与直径大小为模型的输出,建立粒子群优化的BP神经网络缺陷定量识别模型.使用ANSYS软件对带有平底孔洞缺陷的金属平板进行脉冲热分析,提取金属平板检测表面的最大温差与最佳检测时间,作为神经网络模型训练与检验的数据样本,使用神经网络进行预测.计算结果表明:预测值的最大误差为5.5%,最小误差为1%,证明了粒子群优化BP神经网络方法进行红外无损检测定量识别的可行性.
推荐文章
基于PSO-BP神经网络的储能装置实时容量识别与实现
容量识别
储能装置
识别建模
BP神经网络
粒子群算法
在线识别
基于改进PSO-BP神经网络的回弹预测研究
V形自由折弯
回弹
BP神经网络
改进粒子群算法
全局搜索能力
收敛精度
泛化能力
基于PSO-BP神经网络的红外锁相缺陷属性识别
红外锁相
特征提取
缺陷属性识别
BP神经网络
粒子群优化算法
基于GPU的PSO-BP神经网络DOA估计
波达方向估计
粒子群优化
神经网络
图形处理单元
统一计算设备架构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-BP神经网络的红外无损检测缺陷定量识别
来源期刊 南京工业大学学报(自然科学版) 学科 工学
关键词 红外无损检测 定量识别 BP神经网络 粒子群算法
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 501-507
页数 7页 分类号 TP183
字数 4353字 语种 中文
DOI 10.3969/j.issn.1671-7627.2019.04.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陆金桂 南京工业大学机械与动力工程学院 96 717 14.0 23.0
2 钱鹏 南京工业大学机械与动力工程学院 5 11 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (32)
参考文献  (6)
节点文献
引证文献  (4)
同被引文献  (24)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
红外无损检测
定量识别
BP神经网络
粒子群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京工业大学学报(自然科学版)
双月刊
1671-7627
32-1670/N
大16开
南京市浦珠南路30号
1979
chi
出版文献量(篇)
3082
总下载数(次)
9
总被引数(次)
24308
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导