基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Measurement of blood oxygen saturation (sO2) by optical imaging oximetry provides invaluable insight into local tissue functions and metabolism.Despite different embodiments and modalities,all label-free optical-imaging oximetry techniques utilize the same principle of sO2-dependent spectral contrast from haemoglobin.Traditional approaches for quantifying sO2 often rely on analytical models that are fitted by the spectral measurements.These approaches in practice suffer from uncertainties due to biological variability,tissue geometry,light scattering,systemic spectral bias,and variations in the experimental conditions.Here,we propose a new data-driven approach,termed deep spectral learning (DSL),to achieve oximetry that is highly robust to experimental variations and,more importantly,able to provide uncertainty quantification for each sO2 prediction.To demonstrate the robustness and generalizability of DSL,we analyse data from two visible light optical coherence tomography (vis-OCT) setups across two separate in vivo experiments on rat retinas.Predictions made by DSL are highly adaptive to experimental variabilities as well as the depth-dependent backscattering spectra.Two neural-network-based models are tested and compared with the traditional least-squares fitting (LSF) method.The DSL-predicted sO2 shows significantly lower mean-square errors than those of the LSF.For the first time,we have demonstrated en face maps of retinal oximetry along with a pixel-wise confidence assessment.Our DSL overcomes several limitations of traditional approaches and provides a more flexible,robust,and reliable deep learning approach for in vivo non-invasive label-free optical oximetry.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification
来源期刊 光:科学与应用(英文版) 学科
关键词
年,卷(期) 2019,(6) 所属期刊栏目
研究方向 页码范围 1020-1032
页数 13页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (39)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(6)
  • 参考文献(6)
  • 二级参考文献(0)
2018(9)
  • 参考文献(9)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
光:科学与应用(英文版)
双月刊
2095-5545
22-1404/O4
吉林省长春市东南湖大路3888号
eng
出版文献量(篇)
762
总下载数(次)
0
总被引数(次)
112
论文1v1指导