基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
油罐是用于储存油品的工业设施,常用在炼油厂等工业园中,通过卫星或航空遥感图像实现油罐目标的快速检测,可以实现对侵占生态保护红线的疑似工业园区的快速查找,为自然资源监管和生态环境保护提供科学技术支持.探讨了基于深度卷积神经网络在高分辨率遥感影像目标检测中的有效性,基于深度学习目标检测算法中具有代表性的Faster R-CNN(Convolutional Neural Network)和R-FCN(Region-based Fully Convolutional Network)框架,通过对ZF、VGG16、ResNet-503种网络模型进行训练和测试,实现了遥感影像上油罐目标的快速检测;通过修改锚点尺度和数量,丰富了候选框类型和数量,提升了油罐的目标检测精度,最优召回率接近80%.研究表明:深度卷积神经网络能够实现对高分辨率遥感影像中油罐目标的快速检测,为深度学习技术在遥感小目标的快速检测提供了实例和新的思路.
推荐文章
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的行人目标检测系统设计
卷积神经网络
行人目标
检测系统
CNN框架
目标传感器
训练文件
访问接口
复用加速结构
基于深度卷积神经网络的人眼检测
人眼检测
深度学习
卷积神经网络
网络优化
损失优化
泛化能力
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的油罐目标检测研究
来源期刊 遥感技术与应用 学科 工学
关键词 深度学习 卷积神经网络 遥感目标检测 油罐
年,卷(期) 2019,(4) 所属期刊栏目 CNN专栏
研究方向 页码范围 727-735
页数 9页 分类号 TP75
字数 语种 中文
DOI 10.11873/j.issn.1004-0323.2019.4.0727
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张艳梅 9 61 4.0 7.0
2 王颖洁 1 0 0.0 0.0
3 张荞 6 43 2.0 6.0
4 蒙印 1 0 0.0 0.0
5 郭文 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (95)
共引文献  (144)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(2)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(16)
  • 参考文献(3)
  • 二级参考文献(13)
2016(9)
  • 参考文献(0)
  • 二级参考文献(9)
2017(25)
  • 参考文献(4)
  • 二级参考文献(21)
2018(6)
  • 参考文献(5)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
遥感目标检测
油罐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
遥感技术与应用
双月刊
1004-0323
62-1099/TP
大16开
兰州市天水路8号
54-21
1986
chi
出版文献量(篇)
2767
总下载数(次)
11
总被引数(次)
43303
论文1v1指导