基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统协同过滤算法难以学习深层次用户和项目的隐表示,以及对文本信息不能充分提取单词之间的前后语义关系的问题,该文提出一种融合辅助信息与注意力长短期记忆网络的协同过滤推荐模型.首先,附加堆叠降噪自编码器利用评分信息和用户辅助信息提取用户潜在向量;其次,基于注意力机制的长短期记忆网络利用项目辅助信息来提取项目的潜在向量;最后,将用户与项目的潜在向量用于概率矩阵分解中,从而预测用户偏好.在两个真实数据集MovieLens-100k和MovieLens-1M上进行实验,采用RMSE和Recall指标进行评估.实验结果表明,该模型与其他相关推荐算法相比在推荐性能上有所提升.
推荐文章
融合协同过滤的XGBoost推荐算法
协同过滤
冷启动
XGBoost
推荐系统
融合协同过滤的线性回归推荐算法
线性回归
协同过滤
相似性
推荐算法
融合协同过滤和XG Boost的推荐算法
XGBoost
协同过滤
准确性
推荐系统
基于融合信任关系的协同过滤推荐算法
评分时间
用户喜好度
信任关系
协同过滤
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合注意力LSTM的协同过滤推荐算法
来源期刊 中文信息学报 学科 工学
关键词 注意力机制 长短期记忆网络 推荐系统 附加堆叠降噪自编码器 协同过滤
年,卷(期) 2019,(12) 所属期刊栏目 信息检索与问答系统
研究方向 页码范围 110-118
页数 9页 分类号 TP391
字数 6495字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘渊 江南大学数字媒体学院 235 1325 17.0 25.0
3 夏鸿斌 江南大学数字媒体学院 24 148 6.0 11.0
9 罗洋 江南大学数字媒体学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (24)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
注意力机制
长短期记忆网络
推荐系统
附加堆叠降噪自编码器
协同过滤
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导