基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络.方法 变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程.这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度.结果 实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集.通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87.87%和98.18%,与其他分类算法对比有较明显的性能优势.结论 实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中.
推荐文章
基于加权K近邻和卷积神经网络的高光谱图像分类
高光谱图像分类
K近邻
卷积神经网络
基于卷积神经网络的小样本树皮图像识别方法
树皮图像
卷积神经网络
Inception_v3
小样本
基于三维残差网络和虚拟样本的高光谱图像分类方法研究
高光谱图像
图像分类
深度学习
参数优化
三维残差网络
实验验证
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 提高小样本高光谱图像分类性能的变维卷积神经网络
来源期刊 中国图象图形学报 学科 工学
关键词 卷积神经网络 高光谱图像 小样本数据 变维特征提取 空—谱联合分类
年,卷(期) 2019,(9) 所属期刊栏目 遥感图像处理
研究方向 页码范围 1604-1618
页数 15页 分类号 TP391
字数 10743字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘万军 辽宁工程技术大学软件学院 181 1681 19.0 33.0
2 曲海成 辽宁工程技术大学软件学院 52 387 11.0 18.0
3 刘腊梅 辽宁工程技术大学软件学院 10 4 1.0 1.0
4 尹岫 辽宁工程技术大学软件学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (233)
共引文献  (115)
参考文献  (24)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1950(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(13)
  • 参考文献(1)
  • 二级参考文献(12)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(20)
  • 参考文献(0)
  • 二级参考文献(20)
2011(16)
  • 参考文献(0)
  • 二级参考文献(16)
2012(16)
  • 参考文献(1)
  • 二级参考文献(15)
2013(20)
  • 参考文献(2)
  • 二级参考文献(18)
2014(30)
  • 参考文献(1)
  • 二级参考文献(29)
2015(33)
  • 参考文献(3)
  • 二级参考文献(30)
2016(30)
  • 参考文献(3)
  • 二级参考文献(27)
2017(14)
  • 参考文献(4)
  • 二级参考文献(10)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
高光谱图像
小样本数据
变维特征提取
空—谱联合分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导