基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The paper is concerned with the formulation of the static problem of general relativity. As known, this problem is reduced to ten equations for the compo-nents of the Einstein tensor and the solution of these equations is associated with two principal problems. First, since the components of the Einstein tensor identically satisfy four conservation equations, only six of these equations are mutually independent. So, the set of the Einstein equations actually contains six independent equations for ten components of the metric tensor and should be supplemented with four additional equations which are missing in the original theory. Second, for a deformable solid the Einstein tensor is associated with the energy tensor which is expressed in terms of six stresses induced by gravitation. These stresses are not known and the relativity theory does not propose any equations for them. Thus, the static problem of general relativity cannot be properly formulated because the set of governing equations is not complete. In the paper, the problem of completeness of the general relativity governing set of equations is analyzed in application to the spherically symmetric static problem and the proposed approach is further described for the general case. As an example, linearized axisymmetric problem is considered.
推荐文章
金融网络中的SET技术
金融网络
SET
哈希算法
支付交易
基于Rough Set理论的推理机制的研究
Rough Set
模糊集理论
证据理论
推理机制
SET协议的公平性分析
SET协议
公平性
电子图书
基于 PDSOI工艺的抗 SET锁相环设计
锁相环
单粒子效应
抗辐射加固
压控振荡器
多频带
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 To the Complete Set of Equations for a Static Problem of General Relativity
来源期刊 现代物理(英文) 学科 数学
关键词 General RELATIVITY COORDINATE Conditions Compatibility Stress EQUATIONS Spherically SYMMETRIC PROBLEM
年,卷(期) 2019,(12) 所属期刊栏目
研究方向 页码范围 1401-1415
页数 15页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
General
RELATIVITY
COORDINATE
Conditions
Compatibility
Stress
EQUATIONS
Spherically
SYMMETRIC
PROBLEM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代物理(英文)
月刊
2153-1196
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1826
总下载数(次)
0
总被引数(次)
0
论文1v1指导