基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Car following (CF) models are an appealing research area because they fundamentally describe longitudinal interactions of vehicles on the road, and contribute significantly to an understanding of traffic flow. There is an emerging trend to use data-driven method to build CF models. One challenge to the data-driven CF models is their capability to achieve optimal longitudinal driven behavior because a lot of bad driving behaviors will be learnt from human drivers by the supervised learning manner. In this study, by utilizing the deep reinforcement learning (DRL) techniques trust region policy optimization (TRPO), a DRL based CF model for electric vehicle (EV) is built. The proposed CF model can learn optimal driving behavior by itself in simulation. The experiments on following standard driving cycle show that the DRL model outperforms the traditional CF model in terms of electricity consumption.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
倒立摆的Reinforcement Learning模糊自适应控制
单级倒立摆
Reinforcement Learning
模糊自适应控制
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Deep Reinforcement Learning Based Car Following Model for Electric Vehicle
来源期刊 智能城市应用 学科 工学
关键词 AUTONOMOUS electric vehicle car following model DEEP REINFORCEMENT learning TRUST region policy optimization
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 1-8
页数 8页 分类号 TP
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
AUTONOMOUS
electric
vehicle
car
following
model
DEEP
REINFORCEMENT
learning
TRUST
region
policy
optimization
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能城市应用
月刊
2630-5305
重庆市九龙坡区石桥铺石杨路雨林商都创客邦
出版文献量(篇)
689
总下载数(次)
3
总被引数(次)
0
论文1v1指导