基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In order to overcome some defects of the traditional immune algorithm, the immune algorithm was improved for solving a path optimization problem in deep immune learning of a gene network. Firstly, the diversity of the solution population was enhanced in the evolution process by improving the memory cell processing method. Moreover, effective gene information was dynamically extracted from the genes of the excellent antibodies to make good vaccines in the process of immune evolution. Worse antibodies were optimized by vaccinating these antibodies, and the convergence of the immune algorithm to the optimal solution was improved. Finally, the feasibility of the improved immune algorithm was verified in the experimental simulation for solving the classic NP problem in deep immune learning of the gene network.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Improved Immune Algorithm for Solving Path Optimization Problem in Deep Immune Learning of Gene Network
来源期刊 电脑和通信(英文) 学科 工学
关键词 IMPROVED IMMUNE Algorithm PATH Optimization Memory Cell Processing VACCINE
年,卷(期) 2019,(12) 所属期刊栏目
研究方向 页码范围 166-174
页数 9页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
IMPROVED
IMMUNE
Algorithm
PATH
Optimization
Memory
Cell
Processing
VACCINE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导