基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The classification and identification of brain diseases with multimodal information have attracted increasing attention in the domain of computer-aided. Compared with traditional method which use single modal feature information, multiple modal information fusion can classify and diagnose brain diseases more comprehensively and accurately in patient subjects. Existing multimodal methods require manual extraction of features or additional personal information, which consumes a lot of manual work. Furthermore, the difference between different modal images along with different manual feature extraction make it difficult for models to learn the optimal solution. In this paper, we propose a multimodal 3D convolutional neural networks framework for classification of brain disease diagnosis using MR images data and PET images data of subjects. We demonstrate the performance of the proposed approach for classification of Alzheimer’s disease (AD) versus mild cognitive impairment (MCI) and normal controls (NC) on the Alzheimer’s Disease National Initiative (ADNI) data set of 3D structural MRI brain scans and FDG-PET images. Experimental results show that the performance of the proposed method for AD vs. NC, MCI vs. NC are 93.55% and 78.92% accuracy respectively. And the accuracy of the results of AD, MCI and NC 3-classification experiments is 68.86%.
推荐文章
面向 3D 打印应用的 PP/PET 共混 线材制备和性能
聚丙烯
共混改性
力学性能
3D打印
18F-FDG-PET/ECT肿瘤探查患者的健康教育
18FDG-PET/ECT
健康教育
肿瘤探查
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Multimodal 3D Convolutional Neural Networks for Classification of Brain Disease Using Structural MR and FDG-PET Images
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Alzheimer’s disease MRI FDG-PET Convolutional neural NETWORKS RESIDUAL NETWORKS Deep learning Image CLASSIFICATION
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 666-668
页数 3页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Alzheimer’s
disease
MRI
FDG-PET
Convolutional
neural
NETWORKS
RESIDUAL
NETWORKS
Deep
learning
Image
CLASSIFICATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导