基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
互联网应用的蓬勃发展产生了种类多样的网络流量.在网络技术不断进化的过程中,新型流量和流量加密技术的出现,使基于端口和基于有效载荷的传统网络流量分类算法的应用受到限制.为了实现对新型网络流量的自动分类,提出了一种基于机器学习的网络流量分类算法.通过选择特征属性和构建决策树模型,能够实现对流量级别的网络数据进行自动分类.使用网络流量分类领域的公开数据集进行训练和测试,并将测试结果与开源的机器学习平台Weka运行结果相比较,实验结果表明:所构建模型性能优良,在流量分类准确度与Weka平台相近甚至更优的前提下,大幅降低了建模时间,提高了网络数据分类的效率.
推荐文章
基于GA-CFS和AdaBoost算法的网络流量分类
流量分类
相关性特征选择
适应度函数
AdaBoost算法
弱分类器
权重
网络流量分类与应用识别的研究
流量分类
应用识别
机器学习
无监督聚类
有监督分类
基于有督导机器学习的网络流量识别系统
有督导机器学习
网络流量识别
LSSVM
协同量子粒子群优化算法
基于快速SVM的大规模网络流量分类方法
支持向量机
大规模流量分类
比特压缩
权重SVM
分类器
分类准确率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器学习的网络流量分类算法
来源期刊 广西大学学报(自然科学版) 学科 工学
关键词 机器学习 流量分类 决策树 信息熵 属性选择
年,卷(期) 2019,(6) 所属期刊栏目 计算机与电子信息科学
研究方向 页码范围 1650-1657
页数 8页 分类号 TP393
字数 5611字 语种 中文
DOI 10.13624/j.cnki.issn.1001-7445.2019.1650
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李陶深 广西大学计算机与电子信息学院 394 2640 25.0 36.0
2 许嘉 广西大学计算机与电子信息学院 14 9 1.0 2.0
5 吕品 广西大学计算机与电子信息学院 13 8 1.0 2.0
20 潘思羽 广西大学计算机与电子信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (153)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(5)
  • 参考文献(2)
  • 二级参考文献(3)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器学习
流量分类
决策树
信息熵
属性选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西大学学报(自然科学版)
双月刊
1001-7445
45-1071/N
大16开
广西南宁市大学路100号广西大学西校园学报编辑部
28832转3
1976
chi
出版文献量(篇)
4586
总下载数(次)
8
总被引数(次)
23980
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导