基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In view of huge search space in drug design,machine learning has become a powerful method to predict the affinity between small molecular drug and targeting protein with the development of artificial intelligence technology.However,various machine learning algorithms including massive different parameters make the prediction framework choice to be quite difficult.In this work,we took a recent drug design competition (from XtalPi company on the DataCastle platform) as the typical case to find the optimized parameters for different machines learning algorithms and the most effective algorithm.After the parameter optimizations,we compared the typical machine learning methods as decision tree (XGBoost,LightGBM) and artificial neural network (MLP,CNN) with root-mean-square error (RMSE) and coefficient of determination (R2) evaluation.As a result,decision tree is more effective than the neural network as LightGBM>XGBoost>CNN>MLP in the affinity prediction of the specific drug design problem with ~160000 samples.For a much larger screening task in a more complicated drug design study,the sophisticated neural network model may go beyond the decision tree algorithm after generalization enhancing and overfitting reducing.The advanced machine learning methods could extract more information of protein-ligand bindings than traditional ones and improve the screen efficiency of drug design up to 200-1000 times.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Screen efficiency comparisons of decision tree and neural network algorithms in machine learning assisted drug design
来源期刊 中国科学:化学(英文版) 学科
关键词
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 506-514
页数 9页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国科学:化学(英文版)
月刊
1674-7291
11-5839/O6
16开
北京东黄城根北街16号
1950
eng
出版文献量(篇)
4060
总下载数(次)
0
总被引数(次)
11421
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导