基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With the development of Information technology and the popularization of Internet,whenever and wherever possible,people can connect to the Internet optionally.Meanwhile,the security of network traffic is threatened by various of online malicious behaviors.The aim of an intrusion detection system(IDS)is to detect the network behaviors which are diverse and malicious.Since a conventional firewall cannot detect most of the malicious behaviors,such as malicious network traffic or computer abuse,some advanced learning methods are introduced and integrated with intrusion detection approaches in order to improve the performance of detection approaches.However,there are very few related studies focusing on both the effective detection for attacks and the representation for malicious behaviors with graph.In this paper,a novel intrusion detection approach IDBFG(Intrusion Detection Based on Feature Graph)is proposed which first filters normal connections with grid partitions,and then records the patterns of various attacks with a novel graph structure,and the behaviors in accordance with the patterns in graph are detected as intrusion behaviors.The experimental results on KDD-Cup 99 dataset show that IDBFG performs better than SVM(Supprot Vector Machines)and Decision Tree which are trained and tested in original feature space in terms of detection rates,false alarm rates and run time.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Intrusion Detection Algorithm Based on Feature Graph
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 INTRUSION detection machine learning IDS FEATURE GRAPH GRID PARTITIONS
年,卷(期) 2019,(7) 所属期刊栏目
研究方向 页码范围 255-273
页数 19页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
INTRUSION
detection
machine
learning
IDS
FEATURE
GRAPH
GRID
PARTITIONS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导