基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Words are the most indispensable information in human life.It is very important to analyze and understand the meaning of words.Compared with the general visual elements,the text conveys rich and high-level moral information,which enables the computer to better understand the semantic content of the text.With the rapid development of computer technology,great achievements have been made in text information detection and recognition.However,when dealing with text characters in natural scene images,there are still some limitations in the detection and recognition of natural scene images.Because natural scene image has more interference and complexity than text,these factors make the detection and recognition of natural scene image text face many challenges.To solve this problem,a new text detection and recognition method based on depth convolution neural network is proposed for natural scene image in this paper.In text detection,this method obtains high-level visual features from the bottom pixels by ResNet network,and extracts the context features from character sequences by BLSTM layer,then introduce to the idea of faster R-CNN vertical anchor point to find the bounding box of the detected text,which effectively improves the effect of text object detection.In addition,in text recognition task,DenseNet model is used to construct character recognition based on Kares.Finally,the output of Softmax is used to classify each character.Our method can replace the artificially defined features with automatic learning and context-based features.It improves the efficiency and accuracy of recognition,and realizes text detection and recognition of natural scene images.And on the PAC2018 competition platform,the experimental results have achieved good results.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Text Detection and Recognition for Natural Scene Images Using Deep Convolutional Neural Networks
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 Detection RECOGNITION resnet blstm FASTER R-CNN densenet
年,卷(期) 2019,(7) 所属期刊栏目
研究方向 页码范围 289-300
页数 12页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Detection
RECOGNITION
resnet
blstm
FASTER
R-CNN
densenet
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导