基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对视频中的目标进行像素级分割是计算机视觉领域的研究热点,完全没有用户标注的无监督视频分割对分割算法提出了更高的要求.近几年在分割中常使用基于帧间运动信息进行建模的方法,即用光流等运动信息预测目标轮廓,再结合颜色等特征建立模型进行分割.针对这些方法产生的前景背景混淆以及边缘粗糙等问题,本文提出结合全卷积网络的视频目标分割方法.首先通过全卷积网络预测视频序列中显著目标的轮廓,结合光流获得的运动显著性标签进行修正,然后建立时间-空间图模型,运用图割的方法获得最终的预测标签.在SegTrack v2以及DAVIS这2个通用数据集上进行评估,结果表明本文方法较基于帧间运动信息的方法在分割效果上有明显的提高.
推荐文章
结合卷积神经网络和超像素聚类的细胞图像分割方法
细胞分割
卷积神经网络
超像素聚类
染色校正
乳腺细胞图像
基于三维全卷积网络的肝脏和肝癌分割算法研究
肝脏分割
肝癌分割
三维全卷积网络
基于卷积神经网络改进的图像自动分割方法
图像分割
卷积神经网络
多尺度特征融合
残差连接
三维重建
卷积神经网络在医学图像分割中的研究进展
卷积神经网络
医学图像
图像分割
深度学习
综述
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合全卷积网络的无监督视频目标分割
来源期刊 计算机与现代化 学科 工学
关键词 视频分割 目标分割 深度特征 无监督 全卷积网络
年,卷(期) 2019,(6) 所属期刊栏目 应用与开发
研究方向 页码范围 116-120
页数 5页 分类号 TP391.41
字数 4924字 语种 中文
DOI 10.3969/j.issn.1006-2475.2019.06.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视频分割
目标分割
深度特征
无监督
全卷积网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导