原文服务方: 华侨大学学报(自然科学版)       
摘要:
为了提高图像分类精度,降低训练复杂度,提出一种采用无监督学习算法与卷积构造的图像分类模型.首先,从输入无标签图像中随机抽取大小相同的图像块构成数据集,进行预处理.其次,将预处理后的图像块通过两次K-means聚类算法提取字典,并采用离散卷积操作提取最终图像特征.最后,采用Softmax分类器对提取的图像特征进行分类,得出准确率.将该模型与卷积神经网络(CNN),Dropout CNN网络进行比较,结果表明:在对大规模高维图像分类上,文中模型具有分类精确度高、简单、训练参数少、适应度高等优点.
推荐文章
基于无监督学习的行人检测算法
行人检测
无监督
稀疏编码
非线性变换
非极大值抑制
修正Gibbs采样的有限混合模型无监督学习算法
无监督学习
有限混合模型
参数维数变化
跳变
分布元管理
基于一种多分类半监督学习算法的驾驶风格分类模型
驾驶风格
主成分分析
K-means聚类
支持向量机
多分类半监督学习算法
基于半监督学习的应用流分类方法
流量分类
半监督学习
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用无监督学习算法与卷积的图像分类模型
来源期刊 华侨大学学报(自然科学版) 学科
关键词 K-means聚类 图像分类 卷积 卷积神经网络 Dropout
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 146-151
页数 6页 分类号 TP391.41
字数 语种 中文
DOI 10.11830/ISSN.1000-5013.201703109
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李涛 湖北工业大学电气与电子工程学院 7 34 4.0 5.0
2 王改华 湖北工业大学太阳能高效利用湖北省协同创新中心 10 12 2.0 3.0
6 吕朦 湖北工业大学电气与电子工程学院 1 5 1.0 1.0
7 袁国亮 湖北工业大学电气与电子工程学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (5)
同被引文献  (17)
二级引证文献  (4)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(5)
  • 引证文献(4)
  • 二级引证文献(1)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
K-means聚类
图像分类
卷积
卷积神经网络
Dropout
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华侨大学学报(自然科学版)
双月刊
1000-5013
35-1079/N
大16开
1980-01-01
chi
出版文献量(篇)
2621
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导