建立了一种基于近红外光谱(Near infrared spectroscopy,NIR)结合小波变换-随机森林(Wavelet transform-Random forest,WT-RF)的用于甲醇汽油中甲醇含量快速定量分析的方法.采用傅里叶变换红外光谱仪采集54个甲醇汽油样品的光谱,并进行光谱解析;探究不同光谱预处理方法对样品NIR光谱的处理效果,重点探究基于不同小波基函数与小波分解层数的小波变换(Wavelet transform,WT)光谱预处理效果,并通过优化变量重要性阈值筛选随机森林RF校正模型的输入变量;基于优化后的参数及输入变量,构建了甲醇汽油NIR光谱的WT-RF模型.为了进一步验证此模型的预测性能,将其与小波变换-偏最小二乘校正模型(Wavelet transform-Partial least squares,WT-PLS)和小波变换-最小二乘支持向量机校正模型(Wavelet transform-Least square support vector machine,WT-LSSVM)进行对比.结果表明,WT-RF校正模型具有最佳的预测性能,其交叉验证决定系数(Coefficient of determination of cross-validation,R2cv)和均方根误差(Root mean square error of cross-validation,RMSECV)分别是0.9990和0.0044%,预测集决定系数(Coefficient of determination of prediction set,R2p)和均方根误差(Root mean square error of prediction set,RMSEP)分别为0.9885和0.0191%.研究结果表明,NIR光谱结合WT-RF算法是一种快速准确定量分析甲醇汽油中甲醇含量的方法.