Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
摘要:
In this paper,we prove that the supremum sup {∫B∫B|u(y)p(|y|)|u(x)|p(|x|)/|x-y|μdxdy:u∈H10,rad(B)‖▽u‖L2(B)=1 } is attained,where B denotes the unit ball in RN(N ≥ 3),μ ∈ (0,N),p(r) =2*μ + rt,t ∈ (0,min{N/2-μ/4,N-2}) and 2*μ =(2N-μ)/(N-2) is the critical exponent for the Hardy-Littlewood-Sobolev inequality.