基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Sentence semantic matching(SSM)is a fundamental research in solving natural language processing tasks such as question answering and machine translation.The latest SSM research benefits from deep learning techniques by incorporating attention mechanism to semantically match given sentences.However,how to fully capture the semantic context without losing significant features for sentence encoding is still a challenge.To address this challenge,we propose a deep feature fusion model and integrate it into the most popular deep learning architecture for sentence matching task.The integrated architecture mainly consists of embedding layer,deep feature fusion layer,matching layer and prediction layer.In addition,we also compare the commonly used loss function,and propose a novel hybrid loss function integrating MSE and cross entropy together,considering confidence interval and threshold setting to preserve the indistinguishable instances in training process.To evaluate our model performance,we experiment on two real world public data sets:LCQMC and Quora.The experiment results demonstrate that our model outperforms the most existing advanced deep learning models for sentence matching,benefited from our enhanced loss function and deep feature fusion model for capturing semantic context.
推荐文章
Hilbert空间中K-fusion框架的稳定性
算子
Hilbert空间
K-fusion框架
fusion框架
Deep web接口查询能力估计
查询接口
查询能力
Deep Web数据源自动分类
Deep Web
查询接口
朴素贝叶斯分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep Feature Fusion Model for Sentence Semantic Matching
来源期刊 计算机、材料和连续体(英文) 学科 文学
关键词 Natural LANGUAGE processing SEMANTIC MATCHING DEEP learning
年,卷(期) 2019,(8) 所属期刊栏目
研究方向 页码范围 601-616
页数 16页 分类号 H31
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Natural
LANGUAGE
processing
SEMANTIC
MATCHING
DEEP
learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导