基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究了DBN和SDAE在SAR雷达目标识别领域的应用,并在此基础上提出了一种双通道单隐含层的深度学习模型—DBN-SDAE.该模型的优势在于采用双通道的单隐含层模型对图像数据进行学习,提取图像特征,避免了传统深度学习方法随着隐含层和神经元数量的增加计算复杂度增长过快的缺点;同时采用加权融合方法融合两个通道所学习的特征,既保留了数据的细节信息,又保留了数据的结构信息,一定程度上解决了特征利用不充分的问题.实验结果表明,所提方法在NN迭代次数远远小于DBN中NN的迭代次数;且在识别准确率上最高可达98.640%,较SDAE和DBN分别高0.511%和1.701%.
推荐文章
用于稳态视觉诱发电位脑机接口目标识别的深度学习方法
稳态视觉诱发电位
脑-机接口
目标识别
深度学习
面向人体行为识别的深度特征学习方法比较
深度学习
行为识别
序列数据分类
深度卷积神经网络
长短期时间记忆网络
基于增强字典稀疏表示分类的SAR目标识别方法
合成孔径雷达
目标识别
增强字典
稀疏表示分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SAR目标识别的深度学习方法
来源期刊 火力与指挥控制 学科 工学
关键词 DBN SDAE 双通道 单隐含层 加权融合
年,卷(期) 2019,(10) 所属期刊栏目 理论研究
研究方向 页码范围 22-26
页数 5页 分类号 TP181
字数 3533字 语种 中文
DOI 10.3969/j.issn.1002-0640.2019.10.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 白艳萍 中北大学理学院 124 639 13.0 19.0
2 郝岩 中北大学信息与通信工程学院 7 39 4.0 6.0
3 张校非 中北大学理学院 6 40 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (15)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (16)
二级引证文献  (0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(11)
  • 参考文献(0)
  • 二级参考文献(11)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(5)
  • 参考文献(3)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DBN
SDAE
双通道
单隐含层
加权融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
火力与指挥控制
月刊
1002-0640
14-1138/TJ
大16开
山西太原193号信箱
22-134
1976
chi
出版文献量(篇)
9188
总下载数(次)
26
总被引数(次)
34280
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
山西省自然科学基金
英文译名:Shanxi Natural Science Foundation
官方网址:http://sxnsfc.sxinfo.gov.cn/sxnsf/index.aspx
项目类型:
学科类型:
论文1v1指导