基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对轮毂识别系统前期图像特征提取误差较大时分类准确性降低的问题,提出了基于改进粒子群算法优化BP神经网络的轮毂识别模型.在标准粒子群中引入遗传算法的变异因子、惯性权重、时间因子、速度边界限制和反弹策略,以改进粒子群算法,从而提高寻找最优阈值与权值的性能.经过与不同算法的对比数据看出,采用改进粒子群优化BP神经网络算法的分类识别率比其他算法提高了9%左右,且收敛速度、收敛精度均有提高,证明了所提IPSO(improved particle swarm optimization)算法的有效性.
推荐文章
基于粒子群优化BP神经网络的心电信号分类方法
心电信号
粒子群算法
BP神经网络
分类
模式识别
QRS波群
改进粒子群算法在BP神经网络拟合非线性函数方面的应用
BP神经网络
粒子群算法
函数拟合
免疫接种
基于粒子群算法优化BP神经网络漏钢预报的研究
粒子群优化算法
BP神经网络
连铸
漏钢预测
粒子群优化RBF神经网络的DNA序列分类
DNA序列分类
PSO-RBF神经网络
特征提取
分类模型建立
参数优化
分类效果对比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进粒子群优化BP神经网络的轮毂分类算法
来源期刊 中国科技论文 学科 工学
关键词 粒子群改进算法 BP神经网络 轮毂识别分类 特征提取
年,卷(期) 2019,(7) 所属期刊栏目
研究方向 页码范围 773-777,788
页数 6页 分类号 TP183
字数 6891字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 葛艳 青岛科技大学信息科学技术学院 37 209 9.0 13.0
2 刘杏杏 青岛科技大学信息科学技术学院 2 0 0.0 0.0
3 谢俊标 青岛科技大学信息科学技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (88)
共引文献  (85)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1939(1)
  • 参考文献(0)
  • 二级参考文献(1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(2)
  • 二级参考文献(4)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(13)
  • 参考文献(0)
  • 二级参考文献(13)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(9)
  • 参考文献(4)
  • 二级参考文献(5)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群改进算法
BP神经网络
轮毂识别分类
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国科技论文
月刊
2095-2783
10-1033/N
大16开
北京市海淀区中关村大街35号教育部科技发展中心
2006
chi
出版文献量(篇)
4942
总下载数(次)
10
总被引数(次)
14783
论文1v1指导