作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出自适应粒子群神经网络(ADPPSO-BP)算法,并加入自适应变异算子,提高粒子跳出局部搜索的能力,实现对坝体位移的精准预测.以丰满大坝为例进行验证,建立PSO-BP(粒子群神经网络)、LPSO-BP(线性粒子群神经网络)、改进ADPPSO-BP(改进自适应粒子群神经网络)3种模型,对大坝进行变形预测.结果表明,ADPPSO-BP预测误差最小.
推荐文章
基于EMD-PSO-BP网络模型的大坝变形预测
变形预测
EMD
PSO
BP神经网络
基于改进PSO-BP神经网络的回弹预测研究
V形自由折弯
回弹
BP神经网络
改进粒子群算法
全局搜索能力
收敛精度
泛化能力
基于新型PSO算法优化BP神经网络的软件缺陷预测方法研究
软件缺陷预测
粒子群算法
神经网络
基于改进自适应PSO算法的WSN覆盖优化方法
WSN覆盖优化
自适应PSO
动态惯性权重
进化度因子
聚合度因子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 通过改进自适应PSO优化BP网络预测大坝变形
来源期刊 大地测量与地球动力学 学科 地球科学
关键词 水平位移 预测精度 PSO-BP LPSO-BP ADPPSO-BP
年,卷(期) 2019,(5) 所属期刊栏目 现代大地测量
研究方向 页码范围 528-532
页数 5页 分类号 P258
字数 3105字 语种 中文
DOI 10.14075/j.jgg.2019.05.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘忠豹 山东科技大学测绘科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (87)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
水平位移
预测精度
PSO-BP
LPSO-BP
ADPPSO-BP
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大地测量与地球动力学
月刊
1671-5942
42-1655/P
大16开
武昌洪山侧路40号
38-194
1981
chi
出版文献量(篇)
4168
总下载数(次)
6
总被引数(次)
34475
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导