基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在实体关系抽取任务中,通常采用远程监督(distant supervision,DS)数据集,远程监督方法能通过大规模语料库自动标注数据来扩张数据集,但这无疑会使数据集充满大量的噪声.为此,该文将深度残差网络(deep re-sidual network,ResNet)应用到关系提取的远程监督数据集上,通过加深网络层数来提高模型降噪能力.同时,提出了Gate模块,有效提高了深度残差网络的性能.该模块可以学习到每个特征通道的重要性,通过权重增强或抑制各个特征通道的比重,从而防止过拟合.另外,为了进一步解决数据集降噪问题,还提出了一种双池化层的池化层新方案.实验结果表明所提方法相比于目前效果较好的PCNN+ATT模型,在准确率和召回率上都有3% 左右的提升.
推荐文章
基于GRU和注意力机制的远程监督关系抽取
深度学习
远程监督
门控循环单元
注意力机制
基于远程监督的多因子人物关系抽取模型
关系抽取
人物关系
远程监督
机器学习
自然语言处理
基于ResNet卷积神经网络的绿茶种类识别模型构建
卷积神经网络
深度学习
绿茶分类
基于ENCODER_ATT机制的远程监督关系抽取
关系抽取
远程监督
ENCODER
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Gate-ResNet-D模型的远程监督关系提取方法
来源期刊 中文信息学报 学科 工学
关键词 实体关系提取 远程监督 深度残差网络
年,卷(期) 2019,(10) 所属期刊栏目 信息抽取与文本挖掘
研究方向 页码范围 57-63
页数 7页 分类号 TP391
字数 5611字 语种 中文
DOI 10.3969/j.issn.1003-0077.2019.10.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 宋威 江南大学物联网工程学院 44 158 8.0 10.0
2 陈璟 江南大学物联网工程学院 19 51 4.0 6.0
6 袁祯祺 江南大学物联网工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (736)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
实体关系提取
远程监督
深度残差网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
论文1v1指导