作者:
原文服务方: 科技与创新       
摘要:
为探索深度学习在资源回收领域中的应用,采用深度残差网络ResNet18网络模型将废料瓶分类为塑料瓶、金属瓶、玻璃瓶、纸瓶四类.在图像采集过程中,利用Opencv识别出主体对象,并去除多余的背景,将图像预处理为224×224矩阵数据,以减少模型运算量,再以TF2.0框架为后台搭建ResNet18残差网络,并在卷积层后激活函数前增加BN层减少模型训练时间.最终基于深度残差网络ResNet18的废料瓶分类识别正确率为89.4%,实现了对废料瓶子的有效分类,但识别正确率仍有待提高.
推荐文章
基于改进的深度残差网络的表情识别研究
深度学习
残差网络
表情识别
迁移学习
支持向量机
基于深度残差网络的脱机手写汉字识别研究
手写汉字识别
深度学习
深度残差网络
End-to-End
卷积神经网络
组合深度残差网络手势识别
手势识别
残差网络
肤色模型
深度学习
迁移学习
人机交互
基于深度残差网络的星系形态分类
星系
形态分类
卷积神经网络
残差网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度残差网络ResNet的废料瓶分类系统
来源期刊 科技与创新 学科
关键词 废料瓶分类 Opencv 深度学习 ResNet18
年,卷(期) 2020,(14) 所属期刊栏目 科技前沿
研究方向 页码范围 71-72
页数 2页 分类号 X705|TP391.41
字数 语种 中文
DOI 10.15913/j.cnki.kjycx.2020.14.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王浩 武汉理工大学信息工程学院 35 235 9.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (1)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
废料瓶分类
Opencv
深度学习
ResNet18
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技与创新
半月刊
2095-6835
14-1369/N
大16开
2014-01-01
chi
出版文献量(篇)
41653
总下载数(次)
0
总被引数(次)
202805
论文1v1指导