基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于卷积神经网络在图像特征表示方面的良好表现,以及深度哈希可以满足大规模图像检索对检索时间的要求,提出了一种结合卷积神经网络和深度哈希的图像检索方法.针对当前典型图像检索方法仅仅使用全连接层作为图像特征进行检索时,存在有些样本的检索准确率为零的问题,提出融合神经网络不同层的信息作为图像的特征表示;针对直接使用图像特征进行检索时响应时间过长的问题,使用深度哈希的方法将图像特征映射为二进制的哈希码,这样哈希码中既包含底层的边缘信息又包含高层的语义信息;同时,提出了一种相似性度量函数进行相似性匹配.实验结果表明,与已有的图像检索方法相比,该方法在检索准确率上有一定程度的提高.
推荐文章
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于多层卷积神经网络的SAR图像分类方法
雷达目标识别
卷积神经网络
深度学习
MSTAR数据
基于卷积神经网络的灯具商品图像检索
卷积神经网络
商品图片搜索
YOLO算法
多标签分类任务
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合多层卷积神经网络特征的快速图像检索方法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 图像检索 深度学习 深度哈希 卷积神经网络
年,卷(期) 2019,(8) 所属期刊栏目 图像与视觉
研究方向 页码范围 1410-1416
页数 7页 分类号 TP391.41
字数 3818字 语种 中文
DOI 10.3724/SP.J.1089.2019.17845
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王志明 北京科技大学计算机与通信工程学院 19 379 8.0 19.0
2 张航 北京科技大学计算机与通信工程学院 4 8 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (27)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (9)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像检索
深度学习
深度哈希
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导