作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
微博数据量庞大且微博文本的字符数少、特征稀疏,为提高检索精度,提出一种融合BTM和图论的微博检索模型,通过词汇语义相关度计算微博文本中带有标签的特征相关度,构建bi-term主题模型,用JSD距离计算映射到该模型中短文本的词对相关度,抽取CN-DBpedia中实体及图结构,再使用SimRank算法计算图结构中实体间的相关度.综上3种相关度为该模型最终相关度.最后使用新浪微博数据集进行检索实验,实验结果表明:对比于融合隐含狄利克雷分布算法与图论的检索模型和基于开放数据关联和图论方法系统模型,新模型在MAP、准确率和召回率上性能有明显提高,说明该模型具有较优的检索性能.
推荐文章
多特征融合的图文微博情感分析
情感分析
微博
多特征融合
神经网络
图文融合
融合用户兴趣模型与会话抽取的微博推荐方法
用户兴趣模型
会话抽取
归一化割
非负矩阵分解
微博推荐
基于PBTM的海量微博主题发现
主题模型
主题发现
PBTM
吉布斯采样
分布式计算
融合用户行为和内容的微博用户影响力方法
微博
影响力
用户行为
信息传播
LDA模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合BTM和图论的微博检索模型
来源期刊 计算机工程与科学 学科 工学
关键词 微博 短文本 相似度计算 BTM 图论 主题模型
年,卷(期) 2019,(8) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 1512-1518
页数 7页 分类号 TP18
字数 5872字 语种 中文
DOI 10.3969/j.issn.1007-130X.2019.08.024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗可 长沙理工大学计算机与通信工程学院 92 1085 16.0 28.0
5 蔡晨 长沙理工大学计算机与通信工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (36)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(5)
  • 参考文献(4)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
微博
短文本
相似度计算
BTM
图论
主题模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导