基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于二叉树结构组合的多分类SVM具有二分类SVM个数少的特点,避免了不可分、拒分区域的情形出现.针对基于二叉树结构的类别组合方法缺乏类别组合具体评价标准的问题,提出了基于分类属性信息增益IG比的多分类SVM结构评价方法,定义了基于分类属性的IG比,将多类划分成左、右两个类别组合,计算每种可能组合依赖于变量的分类属性IG比,以其最大值作为该组合优劣的衡量标准.使用UCI数据库的数据集对该方法进行实证分析,结果表明,评价指标值取最大值时,其对应类别组合构成的多分类SVM具有较高的识别率.
推荐文章
基于粗糙集的蛋白质结构分类属性筛选
粗糙集
分辨矩阵
属性约简
多结构比对
蛋白质结构分类
基于标签相关性的类属属性多标签分类算法
标签相关性
类属属性
多标签学习
基于多分类SVM的T/R组件SRU级故障诊断
故障诊断
T/R组件
SRU
多分类SVM
故障数据库
仿真训练
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于分类属性IG比的多分类SVM结构评价方法
来源期刊 计算机工程与科学 学科 工学
关键词 二叉树 多分类 支持向量机 信息增益比 分类属性
年,卷(期) 2019,(4) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 719-726
页数 8页 分类号 TP391
字数 6337字 语种 中文
DOI 10.3969/j.issn.1007-130X.2019.04.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张正军 南京理工大学理学院 33 477 7.0 21.0
2 庄立纯 南京理工大学理学院 2 0 0.0 0.0
3 张乃今 南京理工大学理学院 3 0 0.0 0.0
4 李君娣 南京理工大学理学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (61)
共引文献  (201)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(3)
  • 参考文献(1)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
二叉树
多分类
支持向量机
信息增益比
分类属性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导