作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对齿轮振动信号的非平稳非线性问题,提出了一种基于集合经验模态分解(EEMD)和支持向量机结合粒子群优化算法(PSO-SVM)的齿轮箱信号分析和故障诊断方法.首先利用小波包对原始信号进行去噪处理,将去噪信号进行EEMD分解,得到多个本征模函数(IMF).然后计算得到每个本征模函数的能量熵,用作支持向量机训练的特征向量.最后使用PSO优化参数的SVM和BP神经网络方法分别对故障数据进行诊断.实验结果表明,该方法可以有效地应用于齿轮箱的故障诊断.
推荐文章
基于多重分形和PSO-SVM的齿轮箱故障诊断
齿轮箱
分形理论
多重分形
PSO-SVM
故障诊断
基于EEMD和Hilbert变换的齿轮箱故障诊断
齿轮箱
EEMD
Hilbert变换
IMF
基于MF-DFA和SVM的齿轮箱故障诊断
多重分形
去趋势波动分析
支持向量机
故障诊断
基于MCKD-EEMD近似熵和TWSVM的齿轮箱故障诊断
最大相关反褶积
总体平均经验模态分解
近似熵
双子支持向量机
齿轮箱故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EEMD和PSO-SVM的齿轮箱故障诊断
来源期刊 新一代信息技术 学科 工学
关键词 集合经验模态分解 粒子群优化算法 支持向量机 齿轮箱 故障诊断 能量熵
年,卷(期) 2019,(17) 所属期刊栏目 开发与应用
研究方向 页码范围 7-13
页数 7页 分类号 TM614
字数 2767字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 傅国豪 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (285)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(12)
  • 参考文献(0)
  • 二级参考文献(12)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(8)
  • 参考文献(3)
  • 二级参考文献(5)
2010(9)
  • 参考文献(2)
  • 二级参考文献(7)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
集合经验模态分解
粒子群优化算法
支持向量机
齿轮箱
故障诊断
能量熵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
新一代信息技术
半月刊
2096-6091
10-1581/TP
北京市海淀区玉渊潭南路普惠南里13号楼
chi
出版文献量(篇)
639
总下载数(次)
4
总被引数(次)
21
论文1v1指导