基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
合成孔径雷达(Synthetic Aperture Radar,SAR)船舶检测在海洋交通监控中发挥着重要作用,传统SAR目标检测算法一般利用目标与背景杂波之间的对比度差异进行检测,在近岸海域等复杂场景下检测效果较差.为了提高在复杂场景下的检测性能,本文提出一种基于改进Faster R-CNN的船舶检测方法,在分析不同特征分辨率对检测性能影响的基础上,结合VGG的思想与扩张卷积设计一个适用于SAR船舶目标检测的特征提取网络,以提升对小型船舶目标的检测能力.另外,根据sentinel-1A数据集中目标尺寸分布选取小尺寸anchor,并通过去除冗余anchor,将检测速度提升了一倍.在sentinel-1A数据集上的实验证明本文提出的算法能够快速、有效地从复杂场景SAR图像中检测出船舶目标.
推荐文章
基于Faster R-CNN的显著性目标检测方法
视觉显著性
目标检测
元胞自动机
超像素分割
一种改进的Faster R-CNN对小尺度车辆检测研究
FasterR-CNN
小尺度车辆检测
全卷积网络
区域建议网络
锚选择
平衡锚数量
基于改进Faster R-CNN算法的两轮车视频检测
两轮车视频检测
两轮车检测模型
改进FasterR-CNN算法
RPN网络
参数修改
多尺度特征融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进Faster R-CNN的SAR船舶目标检测方法
来源期刊 计算机与现代化 学科 工学
关键词 卷积神经网络 船舶检测 合成孔径雷达
年,卷(期) 2019,(9) 所属期刊栏目 图像处理
研究方向 页码范围 90-95,101
页数 7页 分类号 TN957
字数 5273字 语种 中文
DOI 10.3969/j.issn.1006-2475.2019.09.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩松 中国科学院电子学研究所 39 632 13.0 24.0
2 岳邦铮 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (9)
二级引证文献  (0)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
船舶检测
合成孔径雷达
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导