基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
磁屏蔽在磁场敏感的装置如原子钟、原子干涉仪等精密设备中发挥重要的作用,在变化外磁场下的某个磁屏蔽内部剩余磁场,可以通过Jiles-Atherton磁滞模型和磁屏蔽系数计算得出,根据计算结果可以进行主动补偿来抵消内部磁场的改变.然而实际应用中磁滞模型中五个与磁屏蔽相关的参数以及磁场衰减的两个参数的准确值的获得是比较困难的,通常根据实测磁滞回线人工匹配调节参数会花费大量时间且很难确保最终参数是全局最优值.基于人工神经网络的机器学习方法已经成为一种对复杂模型进行参数优化的有效手段,得益于现代计算机强大的运算能力,该过程通常远远快于人工参数调节,并有更大概率找到全局最优值,获得优于手工调节的参数值.本文利用人工神经网络在线机器学习的方法,对磁滞模型的五个参数与磁屏蔽的另外两个屏蔽相关参数进行优化测定,并对模拟卫星磁场环境下磁屏蔽内剩余磁场进行预测.通过实际测量屏蔽筒内剩余磁场与预测值比对,发现通过机器学习方法得到的磁屏蔽特性参数优于手动找到的参数,且所用时间大大缩短.该结果不仅有助于更好地进行磁场补偿,用于冷原子系统参数优化调整,更重要的是验证了神经网络在多参数物理系统中的应用,可以使其他多参数共同作用的物理实验进行最优参数的快速确定.
推荐文章
基于深层卷积神经网络的电工钢片矢量磁特性模拟
矢量磁滞模型
电工钢片
卷积神经网络
残差模块
基于人工神经网络的航磁信息关联方法的研究
人工神经网络
航磁构造
信息关联
应用改进的神经网络学习方法预测储层参数
神经网络
储集层
参数
测井解释
塔里木盆地
BP神经网络学习参数优化研究
BP神经网络
快速收敛
BP参数设计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于人工神经网络在线学习方法 优化磁屏蔽特性参数
来源期刊 物理学报 学科
关键词 人工神经网络 磁屏蔽 磁滞效应 冷原子钟
年,卷(期) 2019,(13) 所属期刊栏目 总论
研究方向 页码范围 77-86
页数 10页 分类号
字数 5663字 语种 中文
DOI 10.7498/aps.68.20190234
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人工神经网络
磁屏蔽
磁滞效应
冷原子钟
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
物理学报
半月刊
1000-3290
11-1958/O4
大16开
北京603信箱
2-425
1933
chi
出版文献量(篇)
23474
总下载数(次)
35
论文1v1指导