钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机应用研究期刊
\
基于卷积神经网络和Tree-LSTM的微博情感分析
基于卷积神经网络和Tree-LSTM的微博情感分析
作者:
柴玉梅
王文凯
王黎明
原文服务方:
计算机应用研究
卷积神经网络
注意力机制
长短期记忆神经网络
微博情感分析
摘要:
微博情感分析旨在研究用户关于热点事件的情感观点,研究表明深度学习在微博情感分析上具有可行性.针对传统卷积神经网络进行微博情感分析时忽略了非连续词之间的相关性,为此将注意力机制应用到卷积神经网络(CNN)模型的输入端以改善此问题.由于中文微博属于短文本范畴,卷积神经网络前向传播过程中池化层特征选择存在丢失过多语义特征的可能性,为此在卷积神经网络的输出端融入树型的长短期记忆神经网络(LSTM),通过添加句子结构特征加强深层语义学习.在两种改进基础上构造出一种微博情感分析模型(Att-CTL),实验表明该模型在微博情感分析上具有优良的特性,尤其在极性转移方面仍保持较高的F1值.
下载原文
收藏
引用
分享
推荐文章
基于神经网络的微博情感分析
微博
情感分析
神经网络
特征
短文本
基于卷积神经网络和注意力模型的文本情感分析
社交网络
文本情感分析
卷积神经网络
注意力模型
基于卷积神经网络的中文微博情感分类
情感分类
卷积神经网络
微博分类
基于扩展特征矩阵和双层卷积神经网络的微博文本情感分类
卷积神经网络
中文微博
情感分类
扩展特征矩阵
内容分析
文献信息
版权信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于卷积神经网络和Tree-LSTM的微博情感分析
来源期刊
计算机应用研究
学科
关键词
卷积神经网络
注意力机制
长短期记忆神经网络
微博情感分析
年,卷(期)
2019,(5)
所属期刊栏目
算法研究探讨
研究方向
页码范围
1371-1375
页数
5页
分类号
TP391
字数
语种
中文
DOI
10.19734/j.issn.1001-3695.2017.11.0735
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
王黎明
郑州大学信息工程学院
81
602
14.0
20.0
2
柴玉梅
郑州大学信息工程学院
71
900
17.0
28.0
3
王文凯
郑州大学信息工程学院
6
20
2.0
4.0
传播情况
被引次数趋势
(/次)
(/年)
版权信息
全文
全文.pdf
引文网络
引文网络
二级参考文献
(12)
共引文献
(358)
参考文献
(3)
节点文献
引证文献
(17)
同被引文献
(100)
二级引证文献
(16)
2003(2)
参考文献(0)
二级参考文献(2)
2005(1)
参考文献(0)
二级参考文献(1)
2006(3)
参考文献(0)
二级参考文献(3)
2007(2)
参考文献(0)
二级参考文献(2)
2008(3)
参考文献(0)
二级参考文献(3)
2010(2)
参考文献(1)
二级参考文献(1)
2011(1)
参考文献(1)
二级参考文献(0)
2012(1)
参考文献(1)
二级参考文献(0)
2019(19)
参考文献(0)
二级参考文献(0)
引证文献(11)
二级引证文献(8)
2019(19)
引证文献(11)
二级引证文献(8)
2020(14)
引证文献(6)
二级引证文献(8)
研究主题发展历程
节点文献
卷积神经网络
注意力机制
长短期记忆神经网络
微博情感分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
主办单位:
四川省计算机研究院
出版周期:
月刊
ISSN:
1001-3695
CN:
51-1196/TP
开本:
大16开
出版地:
邮发代号:
创刊时间:
1984-01-01
语种:
chi
出版文献量(篇)
21004
总下载数(次)
0
期刊文献
相关文献
1.
基于神经网络的微博情感分析
2.
基于卷积神经网络和注意力模型的文本情感分析
3.
基于卷积神经网络的中文微博情感分类
4.
基于扩展特征矩阵和双层卷积神经网络的微博文本情感分类
5.
多尺度卷积循环神经网络的情感分类技术
6.
基于表情符注意力机制的微博情感分析模型
7.
基于多样化特征卷积神经网络的情感分析
8.
基于LSTM-CNNS情感增强模型的微博情感分类方法
9.
基于Leap Motion和卷积神经网络的手势识别
10.
基于改进神经网络算法的微博热点预测系统设计
11.
基于卷积神经网络的细胞识别
12.
基于卷积神经网络的目标检测研究综述
13.
基于卷积神经网络和贝叶斯分类器的句子分类模型
14.
基于RBF神经网络的微博用户兴趣预测模型
15.
基于卷积神经网络的微博话题内容搜索方法*
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机应用研究2000
计算机应用研究2001
计算机应用研究2002
计算机应用研究2003
计算机应用研究2004
计算机应用研究2005
计算机应用研究2006
计算机应用研究2007
计算机应用研究2008
计算机应用研究2009
计算机应用研究2010
计算机应用研究2011
计算机应用研究2012
计算机应用研究2013
计算机应用研究2014
计算机应用研究2015
计算机应用研究2016
计算机应用研究2017
计算机应用研究2018
计算机应用研究2019
计算机应用研究2020
计算机应用研究2022
计算机应用研究2019年第2期
计算机应用研究2019年第1期
计算机应用研究2019年第3期
计算机应用研究2019年第4期
计算机应用研究2019年第5期
计算机应用研究2019年第10期
计算机应用研究2019年第11期
计算机应用研究2019年第12期
计算机应用研究2019年第6期
计算机应用研究2019年第8期
计算机应用研究2019年第7期
计算机应用研究2019年第9期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号