基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高瓦斯突出风险预测的准确率和效率,在极限学习机(ELM)模型的基础上构建预测模型ACFPA-ELM.采用核线性鉴别分析(KLDA)对瓦斯突出样本数据进行特征抽取,利用代价敏感思想修正ELM适应度函数,同时将Tent混沌搜索和自适应算子引入花朵授粉算法(FPA)中,优化ELM的初始输入权值和阈值,从而提高对瓦斯突出风险的预测能力.实验结果表明,相较于经典的SVM、BP和ELM单一预测模型以及改进的FPA-ELM和PSO-ELM复合预测模型,ACFPA-ELM模型在瓦斯突出风险预测的准确率、预测一致性以及运行效率方面均具有明显的优势.
推荐文章
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
基于极限学习机的迁移学习算法
迁移学习
极限学习机
三维模型分类
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
改进极限学习机的电子音乐分类模型
音乐分类
核主成分分析
极限学习机
音乐特征
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进花朵授粉算法的极限学习机模型
来源期刊 计算机工程 学科 工学
关键词 瓦斯突出 花朵授粉算法 极限学习机 核线性鉴别分析 混沌映射
年,卷(期) 2019,(12) 所属期刊栏目 开发研究与工程应用
研究方向 页码范围 281-288
页数 8页 分类号 TP391
字数 7276字 语种 中文
DOI 10.19678/j.issn.1000-3428.0053285
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵良杉 辽宁工程技术大学系统工程研究所 189 1464 18.0 27.0
2 李臣浩 辽宁工程技术大学系统工程研究所 2 1 1.0 1.0
3 兰亭洋 辽宁工程技术大学系统工程研究所 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (133)
共引文献  (289)
参考文献  (19)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(9)
  • 参考文献(1)
  • 二级参考文献(8)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(14)
  • 参考文献(1)
  • 二级参考文献(13)
2010(12)
  • 参考文献(2)
  • 二级参考文献(10)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(15)
  • 参考文献(4)
  • 二级参考文献(11)
2014(20)
  • 参考文献(1)
  • 二级参考文献(19)
2015(16)
  • 参考文献(1)
  • 二级参考文献(15)
2016(6)
  • 参考文献(3)
  • 二级参考文献(3)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
瓦斯突出
花朵授粉算法
极限学习机
核线性鉴别分析
混沌映射
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导