基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对深度信念网络(Deep Believe Network,DBN)模型泛化能力较弱,导致语音增强效果不佳的问题,提出了一种特征联合优化的回归DBN语音增强算法.该算法对语音和噪声不做任何假设.该算法分别提取语音信号的LMPS(Log-Mel frequency Power Spectrum)和MFCC(Mel-Frequency Cepstral Coefficients)特征.LMPS用于直接重构增强语音,保证了语音听觉质量,MFCC作为辅助次级特征.将两种特征联合输入到DBN体系中对网络参数进行优化.这种联合优化在对LMPS的直接预测中加入MFCC限制,提升了模型对LMPS估计的泛化能力,更加准确地重构增强语音.仿真结果表明,在不同的信噪比环境下,与LPS(Log Power Spectrum)和LMPS单特征优化相比,LMPS和MFCC联合优化使增强语音获得了较高的PESQ和SNR,提高了语音质量和可懂度.
推荐文章
基于深度信念网络的语音情感识别
深度信念网络
极限学习机
语音情感识别
人机交互
联合优化深度神经网络和约束维纳滤波的通道语音增强方法
深度神经网络
语音增强
约束维纳滤波
联合优化
基于深度神经网络的语音增强研究
深度学习
语音增强
人工神经网络
感知联合优化的深度神经网络语音增强方法
语音增强
深度神经网络
代价函数
相关性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 特征联合优化深度信念网络的语音增强算法
来源期刊 计算机工程与应用 学科 工学
关键词 深度信念网络 语音增强 联合优化 回归
年,卷(期) 2019,(9) 所属期刊栏目 理论与研发
研究方向 页码范围 38-42
页数 5页 分类号 TN912.35
字数 3837字 语种 中文
DOI 10.3778/j.issn.1002-8331.1806-0449
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 贾海蓉 太原理工大学信息与计算机学院 24 106 6.0 9.0
2 王卫梅 太原理工大学信息与计算机学院 3 2 1.0 1.0
3 王雁 太原理工大学信息与计算机学院 3 2 1.0 1.0
4 吉慧芳 太原理工大学信息与计算机学院 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (64)
共引文献  (68)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(4)
  • 参考文献(0)
  • 二级参考文献(4)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度信念网络
语音增强
联合优化
回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
山西省自然科学基金
英文译名:Shanxi Natural Science Foundation
官方网址:http://sxnsfc.sxinfo.gov.cn/sxnsf/index.aspx
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导