基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
当前在线广告的业务场景下,线性模型没有充分考虑到数据高维、稀疏性、非线性等特点.针对这些问题,引入了基于梯度提升决策树算法的特征提取方法,提出了基于FTRL(Follow-The-Regularized-Leader)优化算法的因子分解机模型.FTRL优化算法能有效地学习到特征之间存在的非线性关系,使不同参数可以自适应不同学习率,并加入了混合正则项.实验结果证明基于FTRL优化算法的因子分解机模型能有效提高广告点击事件的预测准确率.
推荐文章
基于LDA的互联网广告点击率预测研究
计算广告
点击率
主题模型
因子分解机
基于平衡采样的轻量级广告点击率预估方法
广告点击率
机器学习
计算广告学
类别不平衡学习
互联网广告点击率预估模型中特征提取方法的研究与实现
CTR预估
特征提取
互联网广告
Hadoop大数据平台
GBDT
基于轻量图卷积增强嵌入学习的点击率预测模型
点击率预测
嵌入层学习
特征交互
轻量图卷积
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FTRL优化算法的广告点击率预测模型研究
来源期刊 计算机工程与应用 学科 工学
关键词 广告点击率 逻辑回归 因子分解机 FTRL算法
年,卷(期) 2019,(14) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 122-126
页数 5页 分类号 TP301.6
字数 4721字 语种 中文
DOI 10.3778/j.issn.1002-8331.1804-0013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 厍向阳 西安科技大学计算机科学与技术学院 38 277 10.0 14.0
2 王邵鹏 西安科技大学计算机科学与技术学院 2 11 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (11)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (3)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
广告点击率
逻辑回归
因子分解机
FTRL算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
陕西省自然科学基金
英文译名:Natural Science Basic Research Plan in Shaanxi Province of China
官方网址:
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导