基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对互联网广告数据具有高维稀疏性的特点,在现有的点击率(Click-Through Rate,CTR)预测问题的相关理论和技术基础上,给出了一种基于梯度提升决策树(Gradient Boosting Decision Tree,GBDT)的卷积神经网络(Convolutional Neural Networks,CNN)在线广告特征提取模型(CNN Based on GBDT,CNN+).CNN+模型不仅能从原始数据中提取出深度高阶特征,还能解决卷积神经网络在稀疏、高维特征中提取特征困难的问题.在真实数据集上的实验结果表明,与主成分分析(Principal Component Analysis,PCA)和梯度提升决策树这两种特征提取方法相比,CNN+模型提取的特征更加有效.
推荐文章
基于LDA的互联网广告点击率预测研究
计算广告
点击率
主题模型
因子分解机
互联网广告点击率预估模型中特征提取方法的研究与实现
CTR预估
特征提取
互联网广告
Hadoop大数据平台
GBDT
基于平衡采样的轻量级广告点击率预估方法
广告点击率
机器学习
计算广告学
类别不平衡学习
基于轻量图卷积增强嵌入学习的点击率预测模型
点击率预测
嵌入层学习
特征交互
轻量图卷积
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征优化的广告点击率预测模型研究
来源期刊 华东师范大学学报(自然科学版) 学科 工学
关键词 广告点击率预测 梯度提升决策树 卷积神经网络 特征学习
年,卷(期) 2020,(4) 所属期刊栏目 计算机科学
研究方向 页码范围 147-155
页数 9页 分类号 TP391
字数 6233字 语种 中文
DOI 10.3969/j.issn.1000-5641.201921007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭新顺 上海对外经贸大学统计与信息学院 21 73 5.0 8.0
2 贺小娟 上海对外经贸大学统计与信息学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (50)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
广告点击率预测
梯度提升决策树
卷积神经网络
特征学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东师范大学学报(自然科学版)
双月刊
1000-5641
31-1298/N
16开
上海市中山北路3663号
4-359
1955
chi
出版文献量(篇)
2430
总下载数(次)
5
总被引数(次)
17499
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导