基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了进一步提高点击率(Click-through rate,CTR)预测模型学习有效特征组合的能力,该文提出一种基于增强型因子分解向量输入神经网络(Enhanced factorization machine supported neural network,EFNN)的广告点击率预测模型.该模型在基于因子分解向量输入神经网络(Factorization machine supported neural network,FNN)的基础上增加了新特征生成层,采用一种针对CTR数据的卷积操作,对数据进行通道变换后引入Inception结构进行卷积,将生成的新特征和原始特征结合,提升了深度网络的学习能力.实验结果证明,添加了新特征生成层的增强型FNN能有效提高广告点击事件的预测准确率.
推荐文章
基于LDA的互联网广告点击率预测研究
计算广告
点击率
主题模型
因子分解机
基于轻量图卷积增强嵌入学习的点击率预测模型
点击率预测
嵌入层学习
特征交互
轻量图卷积
基于平衡采样的轻量级广告点击率预估方法
广告点击率
机器学习
计算广告学
类别不平衡学习
互联网广告点击率预估模型中特征提取方法的研究与实现
CTR预估
特征提取
互联网广告
Hadoop大数据平台
GBDT
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于增强型FNN的广告点击率预测模型
来源期刊 南京理工大学学报(自然科学版) 学科 工学
关键词 点击率预测 特征组合 神经网络 特征生成
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 33-39
页数 7页 分类号 TP391
字数 4780字 语种 中文
DOI 10.14177/j.cnki.32-1397n.2020.44.01.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩斌 江苏科技大学计算机学院 54 609 12.0 24.0
2 杨妍婷 江苏科技大学计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (12)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(7)
  • 参考文献(0)
  • 二级参考文献(7)
2018(7)
  • 参考文献(3)
  • 二级参考文献(4)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
点击率预测
特征组合
神经网络
特征生成
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京理工大学学报(自然科学版)
双月刊
1005-9830
32-1397/N
南京孝陵卫200号
chi
出版文献量(篇)
3510
总下载数(次)
7
总被引数(次)
33414
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导