基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过建立BP神经网络模型,利用相邻的BDI数据作为输入变量进行预测,避开了BDI短期预测时影响因素难以量化等问题,同时,利用马尔科夫模型修正神经网络的预测结果,提高预测精度,从而提出一种可用于BDI短期预测的方法.此研究对进出口企业正确核算商品进出口成本、航运公司合理分配运力以及提高自身竞争力等方面都具有重要意义.
推荐文章
船舶交通量的BP神经网络-马尔科夫预测模型
船舶交通量
BP神经网络
马尔科夫预测模型
基于马尔科夫模型和卷积神经网络的异常数据检测方法
异常检测
马尔科夫模型
卷积神经网络
多维数据
基于新维 BP 神经网络-马尔科夫链模型的大坝沉降预测
沉降预测
BP 神经网络
马尔科夫链
大坝监测
长洲水利枢纽
基于离散隐马尔科夫模型的语音识别技术
语音识别
隐马尔科夫模型
动态时间规整
人工神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络-马尔科夫模型的BDI短期预测
来源期刊 信息与电脑 学科 工学
关键词 BDI BP神经网络 马尔科夫模型
年,卷(期) 2019,(14) 所属期刊栏目 算法语言
研究方向 页码范围 39-40
页数 2页 分类号 TP393.05
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田雪 69 221 7.0 12.0
2 王昕 1 0 0.0 0.0
3 阎汝 4 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (10)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BDI
BP神经网络
马尔科夫模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与电脑
半月刊
1003-9767
11-2697/TP
北京市东城区北河沿大街79号
chi
出版文献量(篇)
16624
总下载数(次)
72
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导