基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
笔者介绍了差分隐私保护的研究背景、差分隐私保护的基本原理和方法,分析了k-means算法的隐私泄露问题.针对传统面向差分隐私保护k-means算法存在簇中心选取随机性导致聚类可用性较低的问题,提出一种指数加噪机制与密度估计相结合的方法,选取初始聚类中心,从而保证初始中心挑选的合理性,保障样本数据的隐私性.实验结果表明,提出的新方法可以显著提高聚类结果的可用性.
推荐文章
一种改进的K-means聚类算法
聚类分析
K-means算法
离群点数据
支持差分隐私保护及离群点消除的并行K-means算法
K-均值聚类
离群点消除
差分隐私
MapReduce
一种改进K-means聚类的FCMM算法
K-means聚类
萤火虫
最大最小距离
Tent映射
混沌搜索
一种分裂式的k-means聚类算法
聚类
数据预处理
初始聚类中心
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的面向差分隐私保护的k-means聚类算法
来源期刊 信息与电脑 学科 工学
关键词 隐私保护 差分隐私 k-means 聚类算法
年,卷(期) 2019,(14) 所属期刊栏目 算法语言
研究方向 页码范围 49-52
页数 4页 分类号 TP311.13
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵莉 16 29 4.0 5.0
2 付世凤 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (176)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(8)
  • 参考文献(2)
  • 二级参考文献(6)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
隐私保护
差分隐私
k-means
聚类算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与电脑
半月刊
1003-9767
11-2697/TP
北京市东城区北河沿大街79号
chi
出版文献量(篇)
16624
总下载数(次)
72
总被引数(次)
19907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导