作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对以往的推荐算法中存在的"冷启动"和"数据稀疏性"问题提出了一种QPSO(Quantum behaved Particle Swarm Optimization)聚类与协同过滤相结合的推荐算法.该算法首先用QPSO聚类产生中心聚点来解决模糊C均值聚类中初始聚类中心选择问题,并引入罚函数的思想来确立目标函数,再联合项目隶属度矩阵和稀疏的用户项目评分矩阵构造出用户项目簇矩阵.最后使用协同过滤算法对用户项目簇矩阵进行处理,得到目标用户的推荐项目集合.使用平均绝对误差和综合评价指标F对该算法进行验证,实验结果表明,该算法不仅解决了传统FCM(Fuzzy c-means)算法初始中心选择问题,还解决了协同过滤推荐中存在的数据稀疏和冷启动问题,推荐精度也得到了极大提高.
推荐文章
融合协同过滤的XGBoost推荐算法
协同过滤
冷启动
XGBoost
推荐系统
融合协同过滤的线性回归推荐算法
线性回归
协同过滤
相似性
推荐算法
融合协同过滤和XG Boost的推荐算法
XGBoost
协同过滤
准确性
推荐系统
基于谱聚类与多因子融合的协同过滤推荐算法
协同过滤
谱聚类
Salton因子
时间衰减因子
用户偏好因子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 QPSO与FCM融合的协同过滤推荐算法
来源期刊 电脑知识与技术 学科 工学
关键词 量子粒子群算法 模糊C均值聚类 协同过滤 视频推荐
年,卷(期) 2019,(18) 所属期刊栏目 计算机工程应用技术
研究方向 页码范围 284-287
页数 4页 分类号 TP3
字数 4361字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王晓云 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (650)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(6)
  • 参考文献(0)
  • 二级参考文献(6)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(5)
  • 参考文献(1)
  • 二级参考文献(4)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
量子粒子群算法
模糊C均值聚类
协同过滤
视频推荐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术
旬刊
1009-3044
34-1205/TP
大16开
安徽省合肥市
26-188
1994
chi
出版文献量(篇)
58241
总下载数(次)
228
总被引数(次)
132128
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导