随着互联网应用的蓬勃发展,一个人在不同的社交网络平台上都拥有账户是很常见的.如何在多个社交网络上找到同一个人的账户,对许多应用是很重要的问题,也被称为用户对齐问题.在用户对齐问题上,目前有两个主要的挑战:首先,收集手工对齐的用户对作为训练数据的代价非常大,但传统的有监督方法往往需要大量的标注数据才能获得较好的效果;其次,不同网络中的用户的结构和属性往往不太相同,进一步增加了用户对齐的难度.提出一种无监督用户对齐方法S PUAL(Soft Principle for User Alignment),设计了一种新颖的基于用户的属性与结构的软对齐一致性原则,通过无监督方法计算用户对是否服从此原则来推断用户对是否对齐.在几个公共数据集上的实验表明,该方法的性能比目前最先进的无监督方法都有明显提高.