基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
There have been many theoretical studies and numerical investigations of nonlocal diffusion(ND)problems in recent years.In this paper,we propose and analyze a new discontinuous Galerkin method for solving one-dimensional steady-state and time-dependent ND problems,based on a formulation that directly penalizes the jumps across the element interfaces in the nonlocal sense.We show that the proposed discontinuous Galerkin scheme is stable and convergent.Moreover,the local limit of such DG scheme recovers classical DG scheme for the corresponding local diff usion problem,which is a distinct feature of the new formulation and assures the asymptotic compatibility of the discretization.Numerical tests are also presented to demonstrate the eff ectiveness and the robustness of the proposed method.
推荐文章
Diffusion in garnet: a review
High temperature and high pressure
Diffusion
Garnet
Point defects
一种基于XML的One to One营销优化建模方法
One to One营销优化模型
XML
DOM
自定义建模
一类One to One营销优化模型及其解决方案
One to One营销优化
优化模型
线性规划算法
MATLAB
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Discontinuous Galerkin Method with Penalty for One-Dimensional Nonlocal Diffusion Problems
来源期刊 应用数学与计算数学学报(英文) 学科 数学
关键词 NONLOCAL diff usion DISCONTINUOUS GALERKIN method Interior PENALTY ASYMPTOTIC compatibility Strong stability PRESERVING
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 31-55
页数 25页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NONLOCAL
diff
usion
DISCONTINUOUS
GALERKIN
method
Interior
PENALTY
ASYMPTOTIC
compatibility
Strong
stability
PRESERVING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学与计算数学学报(英文)
季刊
2096-6385
31-2156/O1
Periodicals Agency o
出版文献量(篇)
1156
总下载数(次)
2
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导