基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper focuses on the application of Mamadu-Njoseh polynomials(MNPs)as basis functions for the solution of singular initial value problems in the second-order ordinary differential equations in a perturbation by decomposition approach.Here,the proposed method is an hybrid of the perturbation theory and decomposition method.In this approach,the approximate solution is slihtly perturbed with the MNPs to ensure absolute convergence.Nonlinear cases are first treated by decomposition.The method is,easy to execute with well-posed mathematical formulae.The existence and convergence of the method is also presented explicitly.Resulting numerical evidences show that the proposed method,in comparison with the Adomian Decomposition Method(ADM),Homotpy Pertubation Method and the exact solution is reliable,efficient and accuarate.
推荐文章
Ecosystem service delivery in Karst landscapes: anthropogenic perturbation and recovery
Soil degradation
Ecosystem services
Caesium-137
Karst, China
Role of hydro-geochemical functions on karst critical zone hydrology for sustainability of water res
Hydro-geochemical analysis
Karst critical zone
Water resources
Vegetation Southwest China
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Perturbation by Decomposition:A New Approach to Singular Initial Value Problems with Mamadu-Njoseh Polynomials as Basis Functions
来源期刊 数学和系统科学:英文版 学科 数学
关键词 Perturbation method Orthogonal polynomials Mamadu-Njoseh polynomials Chebychev polynomials singular initial value problems ordinary differential equation(ODE)
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 15-18
页数 4页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Perturbation
method
Orthogonal
polynomials
Mamadu-Njoseh
polynomials
Chebychev
polynomials
singular
initial
value
problems
ordinary
differential
equation(ODE)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数学和系统科学:英文版
月刊
2159-5291
武汉洪山区卓刀泉北路金桥花园C座4楼
出版文献量(篇)
467
总下载数(次)
0
总被引数(次)
0
论文1v1指导