作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This note explores the relations between two different methods. The first one is the Alternating Least Squares (ALS) method for calculating a rank<em>-k</em> approximation of a real <em>m</em>×<em>n</em> matrix, <em>A</em>. This method has important applications in nonnegative matrix factorizations, in matrix completion problems, and in tensor approximations. The second method is called Orthogonal Iterations. Other names of this method are Subspace Iterations, Simultaneous Iterations, and block-Power method. Given a real symmetric matrix, <em>G</em>, this method computes<em> k</em> dominant eigenvectors of <em>G</em>. To see the relation between these methods we assume that <em>G </em>=<em> A</em><sup>T</sup> <em>A</em>. It is shown that in this case the two methods generate the same sequence of subspaces, and the same sequence of low-rank approximations. This equivalence provides new insight into the convergence properties of both methods.
推荐文章
Least-Squares及Galerkin谱元方法求解环形区域内的泊松方程
Least-Squares变分
Galerkin变分
谱元方法
Poisson方程
极坐标系
An experimental study of interaction between pure water and alkaline feldspar at high temperatures a
Alkaline feldspar
Autoclave
High-temperature and high-pressure experiments
The partitioning patterns of nutrients between pods and seeds of Zanthoxylum fruits impacted by envi
Partitioning pattern
Nutritional quality
C:N ratio
Zanthoxylum fruits
Mean annual temperature
Mean annual precipitation
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Equivalence between Orthogonal Iterations and Alternating Least Squares
来源期刊 线性代数与矩阵理论研究进展(英文) 学科 数学
关键词 Alternating Least Squares (ALS) Orthogonal Iterations Equivalence Relations Low-Rank Approximations
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 7-21
页数 15页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Alternating
Least
Squares
(ALS)
Orthogonal
Iterations
Equivalence
Relations
Low-Rank
Approximations
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
线性代数与矩阵理论研究进展(英文)
季刊
2165-333X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
93
总下载数(次)
0
总被引数(次)
0
论文1v1指导