基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The continuous growth of smart devices needing processing has led to moving storage and computation from cloud to the network edges,giving rise to the edge computing paradigm.Owing to the limited capacity of edge computing nodes,the presence of popular applications in the edge nodes results in significant improvements in users’satisfaction and service accomplishment.However,the high variability in the content requests makes prediction demand not trivial and,typically,the majority of the classical prediction approaches require the gathering of personal users’information at a central unit,giving rise to many users’privacy issues.In this context,federated learning gained attention as a solution to perform learning procedures from data disseminated across multiple users,keeping the sensitive data protected.This study applies federated learning to the demand prediction problem,to accurately forecast the more popular application types in the network.The proposed framework reaches high accuracy levels on the predicted applications demand,aggregating in a global and weighted model the feedback received by users,after their local training.The validity of the proposed approach is verified by performing a virtual machine replica copies and comparison with the alternative forecasting approach based on chaos theory and deep learning.
推荐文章
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
Windows Mobile电源管理分析与实现
WindowsMobile
电源管理
PXA270
功耗
Mobile Agent系统位置透明通信的实现
移动Agent
位置透明性
通信
消息发送
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Federated learning framework for mobile edge computing networks
来源期刊 智能技术学报 学科 地球科学
关键词 prediction forecasting FRAMEWORK
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 15-21
页数 7页 分类号 P20
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
prediction
forecasting
FRAMEWORK
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能技术学报
季刊
2468-2322
重庆市巴南区红光大道69号
出版文献量(篇)
142
总下载数(次)
4
总被引数(次)
0
论文1v1指导