基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Analysis of microarray data is a highly challenging problem due to the inherent complexity in the nature of the data associated with higher dimensionality,smaller sample size,imbalanced number of classes,noisy data-structure,and higher variance of feature values.This has led to lesser classification accuracy and over-fitting problem.In this work,the authors aimed to develop a deep feedforward method to classify the given microarray cancer data into a set of classes for subsequent diagnosis purposes.They have used a 7-layer deep neural network architecture having various parameters for each dataset.The small sample size and dimensionality problems are addressed by considering a well-known dimensionality reduction technique namely principal component analysis.The feature values are scaled using the Min-Max approach and the proposed approach is validated on eight standard microarray cancer datasets.To measure the loss,a binary cross-entropy is used and adaptive moment estimation is considered for optimisation.The performance of the proposed approach is evaluated using classification accuracy,precision,recall,f-measure,log-loss,receiver operating characteristic curve,and confusion matrix.A comparative analysis with state-of-the-art methods is carried out and the performance of the proposed approach exhibit better performance than many of the existing methods.
推荐文章
基于移动Agent的Deep Web数据集成研究
Deep Web
数据集成
移动Agent
反馈
Deep web接口查询能力估计
查询接口
查询能力
Deep Web数据源自动分类
Deep Web
查询接口
朴素贝叶斯分类
一种Deep Web聚焦爬虫爬行策略
结构化Deep Web数据源
聚焦爬虫
决策树分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep learning approach for microarray cancer data classification
来源期刊 智能技术学报 学科 医学
关键词 MICROARRAY DIAGNOSIS dimensionality
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 22-33
页数 12页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MICROARRAY
DIAGNOSIS
dimensionality
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能技术学报
季刊
2468-2322
重庆市巴南区红光大道69号
出版文献量(篇)
142
总下载数(次)
4
总被引数(次)
0
论文1v1指导