In single microdisks, embedded active emitters intrinsically affect the cavity modes of the microdisks, resulting in trivial symmetric backscattering and low controllability. Here we demonstrate macroscopic control of the backscattering direction by optimizing the cavity size. The signature of the positive and negative backscattering directions in each single microdisk is confirmed with two strongly coupled microdisks. Furthermore, diabolical points are achieved at the resonance of the two microdisks, which agrees well with theoretical calculations considering the backscattering directions. Diabolical points in active optical structures pave the way for an implementation of quantum information processing with geometric phase in quantum photonic networks.