作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Computerized tomography (CT) scan is the only screening test recommended by doctors to look for lung cancer. Convolutional neural networks (CNNs) have recently proven their ability to successfully classify medical images. Due to its strong compactness property, the Discrete Wavelet transform (DWT) has been commonly used in image feature extraction applications. This paper presents a novel technique for the classification of Lung cancer in Computerized Tomography (CT) scans using Wavelets to find discriminative features in the CT images and CNN to classify the extracted features. Experimental results prove that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 99.5%.
推荐文章
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Novel Lung Cancer Detection Method Using Wavelet Decomposition and Convolutional Neural Network
来源期刊 生物医学工程(英文) 学科 数学
关键词 Convolutional Neural Network CNN) WAVELET TRANSFORM Image Classification LUNG Cancer COMPUTERIZED TOMOGRAPHY (CT)
年,卷(期) 2020,(5) 所属期刊栏目
研究方向 页码范围 81-92
页数 12页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Convolutional
Neural
Network
CNN)
WAVELET
TRANSFORM
Image
Classification
LUNG
Cancer
COMPUTERIZED
TOMOGRAPHY
(CT)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物医学工程(英文)
月刊
1937-6871
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
252
总下载数(次)
1
总被引数(次)
0
论文1v1指导